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CHAPTER I

EXECUTIVE SUMMARY

The principal goal of this research program is to develop a systematic methodology

for the design of feedback control schemes capable of shaping the response of complex

dynamical systems. A continuation of an ongoing research effort, the specific research

program is aimed at the development of a systematic control methodology for lumped and

distributed parameter systems, applicable to both the equilibrium and the nonequilibrium

cases. The typical design objectives would involve designing feedback schemes which

achieve one or more of the following: asymptotic tracking, (an appropriate form of) internal

stabilization, and asymptotic disturbance rejection. In the equilibrium case, when taken

together these form the control task classically known as the servomechanism problem, or

the problem of output regulation.

More generally, the ability to systematically control, or take advantage of, dominant

nonlinear effects in the evolution of complex dynamical systems, in both the equilibrium

and nonequilibrium setting, is an important research goal with applications in several exist-

ing and emerging DOD research and development programs. Notable examples of nonlin-

ear phenomenon within the aerospace industry include the development of flight controllers

for increasing the high angle-of-attack or high agility capabilities of existing or future gen-

erations of manned or unmanned aircraft. Nonlinear effects, such as the couplings between

the pitch, roll and yaw moments at high angles-of-attack, are accentuated in such emerging

technologies, as well as in the design of super-agile nonlinear missiles which, for example,

require high-angle-of-attack maneuvers for rear hemisphere engagements.

Tacit in the goal of shaping the steady-state response of a nonlinear system is the very

existence of a steady-state response and, indeed, the assumption that the notion of steady-

state response is well-defined. This has involved careful reconsideration of many basic

concepts of nonequilibrium nonlinear dynamics, including the notion of the ω-limit set

of a set and its consequences for dissipative systems in the sense of modern nonequilib-

rium nonlinear dynamics. These ideas make it possible to formulate and begin to solve
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the problem of output regulation, in a nonequilibrium setting, for both finite and infinite

dimensional control systems.

Our objectives for distributed parameter systems included the development of a unified

theory of output regulation for linear and nonlinear distributed parameter systems, with

control inputs and outputs acting through the boundary of the spatial domain - in which case

the input and output operators are unbounded. Typical applications involving unbounded

input and output operators arise in mathematical models for control problems for fluid

dynamic systems, systems with (e.g., communications) delays in the inputs or outputs, or

the control of tubular chemical reactors.

In contrast to the lumped case, however, is an opportunity provided by the infinite

dimensional setting is the possibility of incorporating infinite dimensional exogenous sys-

tems. For example, the cancellation of acoustic signals would require rejecting a distur-

bance produced by an infinite dimensional exosystem, such as a wave equation which

would generate a signal with an infinite number of harmonics having known (natural)

frequencies but unknown amplitudes or phases. As another example, repetitive control

typically requires asymptotic tracking of an infinite saw-tooth wave. In this direction, the

research team have succeeded in extending the scope of applicability of regulator theory by

making it possible to accommodate infinite dimensional exosystems.

Finally, in our previous work on output regulation, the research team developed a novel

method for developing asymptotic proxies for state feedback laws. Closer investigation

led to the serendipitous solution of some unsolved problems in signals and systems which

can be couched as interpolation problems in finite dimensional subspaces of H2. Indeed,

inspired by the engineering applications of classical interpolation problems in circuits, sys-

tems and signal processing, the research team have generalized this to the case of arbitrary

(possibly infinite dimensional) subspaces.
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CHAPTER II

RESEARCH TASKS AND ACCOMPLISHMENTS

2.1 Output regulation for lumped nonlinear systems

An essential aspect of output regulation, in both the equilibrium and the nonequilibrium

cases, is the development of a model for a system which generates the disturbances to be

rejected or the signals to be tracked. The generators of these two types of signals can

be connected in parallel, so that in this research it is typically assumed that there is one

exogenous signal generator.

One of our objectives was to investigate the properties of exogenous signal generators,

as well as to delineate the properties of bounded signals which can be generated by ex-

ogenous systems with an appropriate form of stability. The goals of this research thrust

were described in Tasks 2.1 - 2.2 in the body of our proposal. In the classical equilibrium

approach to output regulation, in order to produce periodic exogenous signals one is forced

into the unecessary compromise of using an exosystem with an equilibirium, such as the

harmonic oscillator. As an extreme example, in the nonlinear case, every perioidic sin-

gal, with a given period, is ome nonlinear output of the one-dimensional system τ̇ = 1.

Along the lines of Tasks 2.1 - 2.2, classical output regulation theory has been considerably

enhanced by including nonlinear exosystems with no equilibria.

Another of our objectives, posed in Task 2.3, was to develop the foundations for a non-

equilibrium theory of nonlinear output regulation, giving a more general (non-equilibrium)

definition of the problem.

Indeed, in our research on this task, the research team has laid the foundations for a non-

equilibrium theory of nonlinear output regulation, giving a more general (non-equilibrium)

definition of the problem, deriving necessary conditions, and, using these necessary con-

ditions, to present a set of sufficient conditions and a design methodology for the solution

of the problem in question. Our analysis leads to a non-equilibrium enhancement of the

internal model principle, which can be expressed as a relationships between two uniformly

stable attractors. The first is an attractor for the combined dynamics of the exogenous sig-
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nal generator and the so-called zero-dynamics of the plant to be controlled, intrinsic to the

formulation of the problem. The second is the uniformly stable attractor for the dynam-

ics of the closed-loop system determined by the controller which solves the problem of

output regulation, under hypotheses which are non-equilibrium enhancements of those fa-

miliar from the equilibrium case. This enhancement of the internal model principle asserts,

roughly speaking, that any controller solving the problem of output regulation has to con-

tain a copy of an attractor which may combine the dynamics of the exogenous system with

certain nontrivial steady-state motions occurring in the plant to be controlled. In the simple

case in which there is only one (and trivial) such steady-state motions, and the analysis is

only local, the theory developed reduces to the one presented in our earlier work. On the

other hand, the more general approach discussed here makes it possible to solve problems

to which none of the existing design methods for output regulation is applicable.

The foundations of this theory have been presented in [13]. The basic assumptions con-

sidered in this work no longer include the assumption, common to all earlier literature, that

the zero-dynamics of the controlled plant have a globally asymptotically stable equilibrium.

Rather, this assumption is replaced with the (substantially weaker) hypothesis that the zero

dynamics of the plant “augmented by the exsosystem” have a compact attractor. In this

work, though, the (rather strong) assumption, itself also common to all earlier literature,

that the set of all “feedforward inputs capable of securing perfect tracking” is a subset of

the set of solutions of a suitable linear differential equation (assumption of “immersion”

into a linear system) has been retained. In the subsequent paper [14] it is shown that, within

the new framework, the assumption of linearity can also be weakened and replaced by the

assumption that the set in question is a a subset of the set of solutions of a suitable nonlin-

ear differential equation (assumption of “immersion” into a nonlinear system). In [18], the

results summarized above have been extended to the case of a system having higher rela-

tive degree, by showing how output regulation can be achieved by means of a (dynamic)

pure error feedback. Finally, in the work [19] it is shown that an “immersion” assumption

is not in principle needed in solving a problem of nonlinear output regulation by output

feedback. Under the only assumption that the zero dynamics of the controlled system have
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bounded trajectories, it is shown that there exists a controller solving the problem. The

design procedure illustrated in the paper is based on some recent results, developed by An-

drieu and Praly, on the theory of nonlinear state observers originally proposed by Kazantiz

and Kravaris. The internal model obtained in this way is a linear Hurwitz system with

nonlinear output map.

Given the unanticipated success in pursuing Task 2.3, it was not necessary to address

the issues in Task 2.6, which focused on the development of systematic design methods for

output regulation in case some of the reference trajectories are known functions of time.

Task 2.4 represented an important next step in the development of a nonequilibrium

theory for output regulation. It proposed the development of systematic methods for the

design of feedback laws achieving output regulation for broad classes of exosystems and

nonlinear control systems whose zero dynamics have a compact, Lyapunov stable attractor.

This has been achieved by F. Celani in his Ph.D. thesis, which has appeared in archival

form in [15].

Tasks 2.5 and 2.7 focus on the development of systematic design methods for adaptive

or robust output regulation in the nonequilibrium case. The works [16, 17] show how the

theory of nonlinear adaptive observers can be effectively used in the design of internal

models for nonlinear output regulation. The theory substantially enhances the existing

results in the context of adaptive output regulation, by allowing for not necessarily stable

zero dynamics of the controlled plant and by weakening the standard assumption of having

the steady state control input generated by a linear system.

Finally, contributions to the problem of output regulation on large domains of intitial

data remain a substantial challenge to developing a fairly complete nonequilibrium theory

of output regulation, especially in the adaptive or robust case. This program has attracted

significant attention in the recent literature. The recent Ph. D. thesis by Nathan McGregor,

which is announced in [20] and developed further in [21], contains important contributons

to this program.
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2.2 Moment problems for signals, systems and control

In our work on output regulation, a novel method was obtained for developing asymp-

totic proxies for state feedback laws in terms of interpolation problems in finite dimensional

subspaces of H2, with a degree constraint. This yields a smooth complete parameteriza-

tion of all such interpolants and pairs of convex optimization problems for determining

any interpolant in this class (see [22] - [24] and the references therein). In particular, the

parameterization is in terms of spectral zeros, and for any choice of spectral zeros the inter-

polant is obtained by minimizing a certain convex entropy functional. Hence the spectral

zeros can be used in applications (e.g., robust control and signal processing) for tuning.

A case in point is sensitivity shaping in robust control. The questions of what shapes are

feasible leads to an interesting inverse problem. More specifically, one can now answer the

following two questions. First, given a function f which satisfies specified interpolation

conditions, when is it that f can be obtained as the minimizer of a suitably chosen entropy

functional? Second, given a function g, when does there exist a suitabe entropy functional

so that the unique minimizer f which is subject to interpolation constraints also satisfies

|f | = |g| on the unit circle. The theory and answers to these questions suggest an approach

to identifying interpolants of a given degree and of a given approximate shape.

The focal point of Task 2. 8 was the development of this tool for multivariable systems.

In this [26], the research team has continued previous work by generalizing the theory

of analytic interpolation with degree constraints to the matrix case.This led to the further

development of some aspects of the a theory of the bi-tangential Nevanlinna-Pick interpola-

tion with complexity constraints, which is a natural extension of our previous theory in the

scalar and matrix cases. In analogy with this earlier theory, a complete parameterization is

presented in terms of a parameterized pair of convex optimization problems for solving the

bi-tangential Nevanlinna-Pick interpolation problem. It is also shown to reach the greatest

level of generalization if one insists on keeping the convex optimization structure. The

superiority of pure matrix theory, when it comes to tuning, is also demonstrated.

In another direction, these finite dimensional interpolation results have been extended

to the infinite dimensional setting [25]. In particular, a synthesis of the differentiable ap-
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proach to the generalized moment problem is developed, an approach which begins with

a reformulation in terms of differential forms, and a canonically derived, strictly convex

optimization problem. Engineering applications typically demand a solution that is the ra-

tio of functions in a certain finite dimensional vector space of functions, usually the same

vector space that is prescribed in the generalized moment problem. Solutions of this type

are hinted at in the classical text by Krein and Nudelman and stated in the vast generaliza-

tion of interpolation problems by Sarason. Formulated as generalized moment problems

with a complexity constraint, this gives a complete parameterization of such solutions, in

harmony with the above mentioned results and engineering applications. While our previ-

ous results required some differentiability hypotheses, one now only requires a weak form

involving integrability and measurability hypotheses that are more in the spirit of the clas-

sical treatment of the generalized moment problem. Because of this generality, one can

extend the existence and well-posedness of solutions to this problem to nonnegative, rather

than positive, initial data in the complexity constraint. This has nontrivial implications in

the engineering applications of the theory. This more general result has been extended to

the case where the numerator can be an arbitrary positive absolutely integrable function

that determines a unique denominator in this finite-dimensional vector space.

2.3 Nonlinear oscillations

The focus of Tasks 2.9 and 2.10 are the development of criteria for the existence of

sustained oscillations for a differential equation defined on Euclidean space and the plan

to use such a criterion to determine the behavior of higher dimensional phase-locked loop

circuits. In two dimensions, Poincaré-Bendixson Theory gives a complete criterion for the

existence of periodic orbits for differential equations leaving a bounded domain invariant

and having no equilibria in the domain. In higher dimensions, some initial progress on this

program has been made, as reported in [12]. Furthermore developments include a fairly

general set of criteria which can be tested infinitesimally.

As an example of the results developed in [12], there is the following generalization of

the Poincaré-Bendixson theory.
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Definition 2.3.1. (Pliss) Suppose M ⊂ Rn is a bounded domain with smooth boundary. If

M is diffeomorphic to Dn−1 × S1, then M is a toroidal region.

An angular one-form on a bounded domain D for a vector field X in Vect(Rn) is a

closed differential ω =
∑n

i=1 aidxi such that

〈ω,X〉 > 0 =
n∑

i=1

aiXi > 0

where X1, for i = 1, . . . , n are the components of the vector field X .

Theorem 2.1. Suppose X ∈ Vect(Rn) defines a differential equation ẋ = f(x) on Rn

which leaves a toriodal region M positively invariant. If X has an angular one-form, then

X has a periodic solution.

Future research directions include the continuing development of the general criterion

underlying this result as well as its applications to specific differential equations, such as

those describing a phase-locked loop circuit.

2.4 Output regulation for distributed parameter systems

2.4.1 Zero Dynamics Controller for Linear Parabolic Systems

In a series of papers (see e.g., [5, 6]) a systematic methodology for solving certain

problems of output regulation for a class of linear abstract boundary control systems using

dynamic and static controllers has been developed. For the special systems considered in

this work, the controllers are designed using controllers or static feedback derived from an

associated zero dynamics system. The zero dynamics is obtained from the plant by con-

straining the error (the difference between the measured output and signal to be tracked) to

be zero. Under our assumptions the proof of the main result is very simple. Moreover, in

applications this result is quite easy to apply and provides a very simple design procedure

for a wide range of problems that can otherwise be difficult to solve. Thus far, numerous

colocated and non-colocated examples have been studied The method is most readily ap-

plicable in colocated case. Indeed, the noncolocated case is somewhat different requiring
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a more lengthy development and is currently part of our ongoing research. These methods

have also been applied in the case of interior point control in [7].

A unifying methodology for both lumped and distributed parameter systems, there are

several advantages of the zero dynamics controller methodology:

1. The algorithm is straightforward. The assumptions are generally easily verified.

2. The design is easily applied to co-located boundary control systems governed by

partial differential equations.

3. The method is applicable to linear and nonlinear problems.

4. Low order controllers may be obtained from Steady State Response of the zero dy-

namics.

5. It easily adapts to handle rejection of known disturbances.

6. The design methodology has been extended to handle several interesting non-colocated

and even nonlinear examples.

7. The method also works well for interior point control.

2.4.2 The Geometric Theory for the Regulator Equations

In all of its generality, the origin of the geometric approach to output regulation derives

from the earlier work of Francis [8] and Francis and Wonham [11].

In particular, it is still quite common that the reference signal and disturbance are con-

sidered (using a parallel sum connection) to be generated by a common finite dimensional

exosystem

ẇ = Sw, w(0) = w0, (2.1)

yr = Qw

P = Pw

where w ∈ W a finite dimensional vector space, S ∈ L(W ), P ∈ L(W, Z) and Q ∈

L(W, U) (here U is the input space).

For a broad class of linear infinite dimensional systems, it is also generally possible to
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rewrite the overall system in the more standard systems theoretic form

zt = Az + Bu + Pw, z(0) = ϕ, (2.2)

y(t) = Cz(t), (2.3)

ẇ = Sw, w(0) = w0.

In the simplest cases, under quite general assumptions, a state feedback law solving the

output regulation problem is solvable by a feedback control u in the form

u = Kz + (Γ−KΠ)w

where K is any stabilizing feedback for the pair (A, B) and Π ∈ D(A) ⊂ L(W, Z) and

Γ ∈ L(W, U) are operators satisfying the Regulator Equations:

ΠS = AΠ + (BΓ + P )

CΠ−Q = 0
. (2.4)

Under the additional hypotheses that the operator A in (2.2) generates an exponentially

stable semigroup, one may take K ≡ 0 and simply seek u = Γw.

The geometric approach to the design of control laws solving problems of this type

has received considerable attention in the literature. A number of authors ([1], [9], [10])

have extended finite dimensional geometric methods to the infinite dimensional case and

characterize solvability of the regulator problem for distributed parameter problems, with

bounded input and output operators.

For unbounded B and C this task is much more difficult. 5n [4] some preliminary

results have been derived in this case for the class of regular linear systems. A main com-

plication here is showing that a given systems is described by a regular linear linear system.

In [6] it is shown that a general class of parabolic boundary control systems satisfies our

underlying assumptions for solvability of the regulator equations and the output regulation

problem.
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2.4.3 Nonlinear Distributed Parameter Systems

As this program goes forward, one of the longer term goals is the development of a

theory of nonlinear output regulation as parallel as possible to the theory for linear prob-

lems. For linear parabolic problems a complete characterization of those state feedback

control laws u = Γw, which solve a problem of output regulation for a stable linear system

with bounded inputs and outputs, has been developed. Several results for special classes of

nonlinear problems are also obtained.

While output regulation is an asymptotic theory and the long time existence of solutions

to open-loop nonlinear distributed parameter systems remains extremely challenging, there

has been some success in establishing long time existence and asymptotic behavior for the

control of certain examples or system classes using particular feedback design methods ([1,

2, 5]). Still, the control of nonlinear distributed parameter systems is sufficiently difficult

that the current efforts have primarily focused on local results for output regulation with

respect to signals and disturbances generated by finite-dimensional exogeneous systems,

where techniques such as center manifold methods can yield some powerful insights.

These local techniques are not simply an appeal to linearization. Even in the lumped

nonlinear case, elementary examples show that a solution to the problem of output regu-

lation for the linearization does not solve the output regulation problem for the nonlinear

problem.

2.5 Masters Thesis

Marinos Baghdati

http://etd.lib.ttu.edu/theses/available/etd-04072005-145838/

A general theory is presented for solutions to problems of output regulation for bound-

ary control of bounded domains in R2. This theory is then applied to address the special

case where the domain in R2 is a rectangle. The problems considered are ones involving

the two dimensional heat equation, where both the controlling and sensing occur on one

side of the rectangle, and the solutions are obtained through a zero dynamics controller

design. The solution methods presented involve both an analytical approach, as well as a
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numerical approach.

Matthew Walker

http://etd.lib.ttu.edu/theses/available/etd-04112005-141405/

A general methodology is described for designing feedback control laws achieving out-

put regulation for a class of linear plants that evolve in an infinite dimensional state space.

In addition several examples illustrating the methodology for colocated and non-colocated

actuator and sensor pairs are provided. Also considered are some examples of output reg-

ulation for a nonlinear plant governed by Burgers’ equation. The basic problem is to find

a boundary control which forces the output of a distributed parameter system to asymptot-

ically (as time goes to infinity) track a prescribed trajectory. The design methodology is

based on the zero-dynamics system, a system formed from the plant by requiring the error

to be zero. This thesis will discuss the zero-dynamics system in depth by examining many

examples of control problems.

Vijay Moses Johnson

http://etd.lib.ttu.edu/theses/available/etd-08012005-130440/

This research work is concerned with the numerical implementation of a geometric de-

sign methodology for obtaining feedback control schemes capable of shaping the response

of dynamical systems governed by hyperbolic partial differential equations. This work fo-

cuses on asymptotic tracking. This type of problem represents one of the central problems

in control theory. In this work numerical approximations of control laws for controlling a

plant, described by hyperbolic partial differential equations, are obtained in order to have

the output track a reference signal (and/or reject a disturbance) produced by a finite dimen-

sional external generator or exogenous system. Two different kind of examples of set-point

and harmonic tracking are dealt with this work, one for One Dimensional Wave Equation

and the other for Hinged Beam Equation. Modified Euler Method is used for solving the

two equations numerically.
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[1] C.I. Byrnes, D.S. Gilliam, I.G. Laukó and V.I. Shubov, “Output regulation for linear

distributed parameter systems,” IEEE Trans. Aut. Control., 45, No.12, 2236-2252

(2000).

[2] C. I. Byrnes, D.S. Gilliam, A. Isidori and V.I. Shubov, “Set point boundary con-

trol for a nonlinear distributed parameter system,” Proceedings of the 42nd IEEE

Conference on Decision and Control, pp 312-317, Dec 9-12, 2003, Maui, Hawaii.

[3] C. I. Byrnes, D.S. Gilliam, A. Isidori, V.I. Shubov, “Static and Dynamic Controllers

for Boundary Controlled Distributed Parameter Systems,” Proceedings of the 43rd

Conference on Decision and Control, Nassau, The Bahamas, December (2004).

[4] C. I. Byrnes, D.S. Gilliam, V.I. Shubov, G. Weiss, “The state feedback regulator

problem for regular linear systems,” preprint TTU, 2002.

[5] C. I. Byrnes, D.S. Gilliam, A. Isidori, V.I. Shubov, “Static and Dynamic Controllers

for Boundary Controlled Distributed Parameter Systems,” Proceedings of the 43rd

Conference on Decision and Control, Nassau, The Bahamas, December (2004).

[6] C.I. Byrnes, D.S. Gilliam, A. Isidori, V. Shubov “Zero Dynamics Modeling and

Boundary Feedback Design for Parabolic Systems,” Mathematical and Computer

Modelling, 44 (2006), no. 9-10, (co-authors ), pp. 857–869.

[7] C. I. Byrnes, D.S. Gilliam, A. Isidori, “Interior Point Control of a Heat Equation

Using Zero Dynamics Design,” Proceedings of 2006 American Control Conference

2006.

[8] B. A. Francis, The linear multivariable regulator problem, SIAM Journal of Control

and Optimization, 14:486–505, 1977.

13



[9] S. A. Pohjolainen, “On the asymptotic regulation problem for distributed parame-

ter systems,” Proc. Third Symposium on Control of Distributed Parameter Systems,

Toulouse, France (July 1982).

[10] J.M. Schumacher, “Finite-dimensional regulators for a class of infinite dimensional

systems,” Systems and Control Letters, 3 (1983), 7-12.

[11] B. A. Francis and W. M. Wonham, The internal model principle of control theory,

Automatica, 12:457–465, 1976.

[12] C. I. Byrnes, “Differential Forms and Dynamical Systems,” to appear in The Picci

Festschrift, 2007.

[13] C.I. Byrnes, A. Isidori, “Limit sets, zero dynamics and internal models in the prob-

lem of nonlinear output regulation, IEEE Transactions on Automatic Control, AC-

48, pp. 1712-1723, (2003).

[14] C.I. Byrnes, A. Isidori, “Nonlinear internal models for output regulation,” IEEE

Transactions on Automatic Control, AC-49, pp. 2244-2247, (2004).

[15] C.I. Byrnes, F. Celani, A. Isidori, “Omega limit sets of systems that are semiglob-

ally practically stabilized,” Int. J. of Robust and Nonlinear Control, 15, pp. 315-333

(2005).

[16] F. Delli Priscoli, L.Marconi, A. Isidori, “A New Approach to Adaptive Nonlinear

Regulation, SIAM J. Contr. and Optimiz., 45 (2006), no. 3, 829–855.

[17] F. Delli Priscoli, L.Marconi, A. Isidori, “Adaptive Observers as Nonlinear Internal

Models,” Systems and Control Letters, 55 (2006), no. 8, 640–649.

[18] C.I. Byrnes, A. Isidori, L. Marconi, “Further results on output regulation by pure

error feedback,” Proceedings of IEEE CDC 2005.

[19] C.I. Byrnes, A. Isidori, L. Marconi, L. Praly, Nonlinear Output Regulation Without

Immersion, Proceedings of IEEE CDC 2005.

14



[20] N. K. McGregor, C.I. Byrnes, A. Isidori, “Results on Nonlinear Output Regulation

for MIMO Systems,” Proceedings of ACC 2006.

[21] N. K. McGregor, C.I. Byrnes, A. Isidori, “Global robust output regulation for a class

of uncertain nonlinear systems,” to appear in Systems and Control Letters.

[22] C. I. Byrnes and A. Lindquist, “Variational problems and global inverse function

theorems,” Intern. Journal of Robust and Nonlinear Control 16 (2007) 1 -18.

[23] C. I. Byrnes and A. Lindquist, “The generalized moment problem with complexity

constraint,” Integral Equations and Operator Theory, 56 (2006) 163 -180.

[24] C. I. Byrnes and A. Lindquist, “The uncertain generalized moment problem with

complexity constraint,” New Trends in Nonlinear Dynamics and Control, W. Kang,

M. Xiao and C. Borges (Eds.), Springer Verlag, 2003, 267–278.

[25] C.I. Byrnes, T.T. Georgiou, A. Lindquist and A. Megretski, “Generalized interpo-

lation in H∞ with a complexity constraint,” Trans. of the American Math. Society,

358(3), pp. 965–987, March 2006.

[26] Y. Kuroiwa and A. Lindquist, Bi-tangential Nevanlinna-Pick interpolation with a

complexity constraint, Proc. MTNS 2006, pp. 2541–2563, Kyoto, Japan.

15



CHAPTER IV

PERSONNEL INFORMATION

4.1 Personnel
Christopher I. Byrnes Professor, Washington University, St. Louis

Alberto Isidori Professor, Washington University, St. Louis

David S. Gilliam Professor, Texas Tech University

Anders Lindquist Professor, KTH, Stockholm, Sweden

Victor Subov Professor, Texas Tech University

Paul Iglesias Washington University, St. Louis

Nathan McGregor Washington University, St. Louis

4.2 Honors & Awards

3 IEEE Fellows (Dr.s C.I. Byrnes, A. Isidori, A. Lindquist).

Dr. A. Lindquist presented Invited plenary lecture at the International Congress on the

Applications of Mathematics (ICAM), Santiago de Chile, March 13-17, 2006.

Dr. A. Isidori has been appointed President-Elect of the International Federation of Auto-

matic Control (IFAC).

Dr. Christopher I. Byrnes was awarded the W.T. and Idalia Reid Prize for his contributions

to linear and nonlinear systems and control at the SIAM Annual Meeting in July 2005.

Dr. A. Isidori has been installed as Edwin H. Murty Professor of Engineering at Washing-

ton University, November 2004.

Dr. A. Isidori has been elected Fellow of IFAC, July 2005.

The paper: C. Bonivento, A. Isidori, L. Marconi, A. Paoli, Implicit fault tolerant con-

trol: application to induction motors, Automatica, 40, pp. 355-371, (2004) was given the

triennial Automatica award at the IFAC World Congress in Prague, 2005.

At the 42nd IEEE CDC, Maui, Hawaii, in December 2003, C. I. Byrnes, T. Georgiou and

A. Lindquist were awarded the 2003 IEEE George S. Axelby Award for the best paper in

the IEEE Trans. on Aut. Control.
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The paper A convex optimization approach to the rational covariance extension problem,

by C. I. Byrnes, S. V. Gusev and A. Lindquist was selected in 2000 to be published in an

enhanced form in SIAM Review as a “SIGEST” paper.

At the 40th IEEE CDC, Orlando, Florida, in December 2001, A.Isidori was awarded the

2001 Hendrik W. Bode Lecture prize from the Control Systems Society of IEEE.

Te triennial IFAC Best Paper Award, (C.I. Byrnes and A. Isidori), 1993 IFAC World

Congress.

IEEE George S. Axelby Award as the best paper in the IEEE Trans. on Aut. Control, 1991

( C.I. Byrnes and A. Isidori).

Dr. C.I. Byrnes was elected in March 2001 as a Foreign Member of the Royal Swedish

Academy of Engineering Sciences.

Dr. C.I. Byrnes, was installed as the Edward G. and Florence H. Skinner Professor of

Systems and Engineering at Washington University, St. Louis, 1998.

Dr. C.I. Byrnes, elected Fellow of the Academy of Sciences of St. Louis in 1998.

Dr. C.I. Byrnes was awarded an Honorary Doctorate of Technology from the Swedish

Royal Institute of Technology, November 1998.

The Graduate College Distinguished Research Award: C.I. Byrnes, 1988, ASU.

Fellow, Japanese Society for the Promotion of Science: C.I. Byrnes, 1986.

“Quazza Medal” awarded to Dr. A. Isidori at 13th IFAC World Congress in San Fran-

cisco, 1996 for “Pioneering and Fundamental Contributions to the Design of Nonlinear

Feedback Systems.”

Alberto Isidori was listed in the Highly-Cited database among the top 10 most-cited au-

thors in Engineering in the world for the period 1981-1999.

Dr. A. Lindquist, Zaborszky Lecturer for the year 2000.

Dr. A. Lindquist, Gordon McKay Visiting Profesor, Berkeley, 2002.

Dr. A. Lindquist, Israel Pollak Distingushed Lecturer, 2005

Dr. A. Lindquist, Foreign Member of Russian Academy of Natural Sciences, 1997.

Dr. A. Lindquist elected Member of the Royal Swedish Acad. of Engr. Sci., 1996.

Dr. A. Lindquist, Honorary Member of Hungarian Operational Res. Soc., 1994.
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CHAPTER V

TRANSITIONS AND DISCOVERIES

5.1 AFRL Point of Contact

Dr. Siva S. Banda, Senior Scientist for Control Theory, Air Vehicles Directorate, Air

Force Research Laboratory, Wright-Patterson Air Force Base, Ohio. Phone: (937)255-

8677, Fax: (937)656-4000, siva.banda@wpafb.af.mil

5.2 Transitions

Dr. Kevin A. Wise, The development of improved(lower cost, lower weight) ac-

tuators for UCAV’s. This transition by Boeing has been tested using their X-45A

simulator, with success.

Elizaberh R. Holohan, lizh@intven.com Intellectual Ventures, Bellevue WA 98004.

Speaker recognition for use as a biometric for security systems, and applications to

high resolution signal analysis within a desired frequency range. The company (IV)

has been in ”due diligence” negotiations, on a monthly basis, with Wash. U. since

July, 2005.

Dr. Yutaka Ikeda (Phantom Works Boeing) The internal model principle for har-

monic disturbance rejection and for dead zone modeling. This transition began with

the application of output regulation, jointly with Dr. Ikeda, to the problem of sup-

pression of harmonic disturbances in a (sanitized) model for take-off and landing of

a UAV.

Drs. Gilliam and Shubov have continued their collaboration with Dr. John Burns, at

the AFOSR Center for Optimal Design and Control at VPI, on the design of special

sensors that damp high frequency oscillations. Applications include problems in

regulation (such as active noise suppression) and various topics in hydrodynamics

including applications to large eddy simulations (les).
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5.3 New Discoveries

C.I. Byrnes and A. Lindquist, Method and Apparatus for Speech Analysis and Synthesis,

United States Patent 5,940,791, August 17, 1999.

C.I. Byrnes and A. Lindquist, Method and Apparatus for Speaker Recognition, U.S. Patent

6,256,609, July 3, 2001.

C.I. Byrnes, A. Lindquist and T.T. Georgiou, A Tunable High-Resolution Spectral Esti-

mator, U.S. Patent 6,400,310, June 4, 2002.

One U. S. and 12 extensions or foreign patent applications pending.
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